skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vahala, Kerry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs. 
    more » « less
  2. Temporal soliton mode locking in coherently pumped microcavities is a promising route towards miniaturized frequency comb systems. However, the power efficiency of the resulting microcombs is usually quite low. Soliton generation by pulse pumping provides a way to increase conversion efficiency (so far, as high as 8%). Here, we study conversion efficiency and report a single-soliton conversion efficiency as high as 54% using a scanning laser, as well as a steady-state single-soliton conversion efficiency as high as 34%. We use the Lagrangian approach to develop analytical expressions for efficiency and soliton temporal placement within the pumping pulse, and our measurements reveal features in the tuning dependence of soliton power and efficiency not seen in continuous pumping. Our experimentally confirmed expressions for efficiency will be useful in understanding advantages and limitations of pulse pumped systems. 
    more » « less
  3. Abstract Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries. 
    more » « less
  4. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
    Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech, the University of California, and the University of Hawaii instrument development teams, as well as industry and other organizations. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of projects currently in design or development phases and, since we keep our eye on the future, summarize projects in exploratory phases that originate from our 2022 strategic plan developed in collaboration with our science community to adapt and respond to evolving science needs. 
    more » « less